Entrer un problème...
Algèbre linéaire Exemples
S([abc])=[a+3b-6c2a+b+ca+5b+c]
Étape 1
Le noyau d’une transformation est un vecteur qui rend cette transformation égale au vecteur nul (la préimage de la transformation).
[a+3b-6c2a+b+ca+5b+c]=0
Étape 2
Créez un système d’équations à partir de l’équation vectorielle.
a+3b-6c=0
2a+b+c=0
a+5b+c=0
Étape 3
Write the system as a matrix.
[13-6021101510]
Étape 4
Étape 4.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
Étape 4.1.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
[13-602-2⋅11-2⋅31-2⋅-60-2⋅01510]
Étape 4.1.2
Simplifiez R2.
[13-600-51301510]
[13-600-51301510]
Étape 4.2
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
Étape 4.2.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[13-600-51301-15-31+60-0]
Étape 4.2.2
Simplifiez R3.
[13-600-51300270]
[13-600-51300270]
Étape 4.3
Multiply each element of R2 by -15 to make the entry at 2,2 a 1.
Étape 4.3.1
Multiply each element of R2 by -15 to make the entry at 2,2 a 1.
[13-60-15⋅0-15⋅-5-15⋅13-15⋅00270]
Étape 4.3.2
Simplifiez R2.
[13-6001-13500270]
[13-6001-13500270]
Étape 4.4
Perform the row operation R3=R3-2R2 to make the entry at 3,2 a 0.
Étape 4.4.1
Perform the row operation R3=R3-2R2 to make the entry at 3,2 a 0.
[13-6001-13500-2⋅02-2⋅17-2(-135)0-2⋅0]
Étape 4.4.2
Simplifiez R3.
[13-6001-1350006150]
[13-6001-1350006150]
Étape 4.5
Multiply each element of R3 by 561 to make the entry at 3,3 a 1.
Étape 4.5.1
Multiply each element of R3 by 561 to make the entry at 3,3 a 1.
[13-6001-1350561⋅0561⋅0561⋅615561⋅0]
Étape 4.5.2
Simplifiez R3.
[13-6001-13500010]
[13-6001-13500010]
Étape 4.6
Perform the row operation R2=R2+135R3 to make the entry at 2,3 a 0.
Étape 4.6.1
Perform the row operation R2=R2+135R3 to make the entry at 2,3 a 0.
[13-600+135⋅01+135⋅0-135+135⋅10+135⋅00010]
Étape 4.6.2
Simplifiez R2.
[13-6001000010]
[13-6001000010]
Étape 4.7
Perform the row operation R1=R1+6R3 to make the entry at 1,3 a 0.
Étape 4.7.1
Perform the row operation R1=R1+6R3 to make the entry at 1,3 a 0.
[1+6⋅03+6⋅0-6+6⋅10+6⋅001000010]
Étape 4.7.2
Simplifiez R1.
[130001000010]
[130001000010]
Étape 4.8
Perform the row operation R1=R1-3R2 to make the entry at 1,2 a 0.
Étape 4.8.1
Perform the row operation R1=R1-3R2 to make the entry at 1,2 a 0.
[1-3⋅03-3⋅10-3⋅00-3⋅001000010]
Étape 4.8.2
Simplifiez R1.
[100001000010]
[100001000010]
[100001000010]
Étape 5
Use the result matrix to declare the final solution to the system of equations.
a=0
b=0
c=0
Étape 6
Write a solution vector by solving in terms of the free variables in each row.
[abc]=[000]
Étape 7
Write as a solution set.
{[000]}
Étape 8
Le noyau de S est le sous-espace {[000]}.
K(S)={[000]}